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1 Equalizers, Kernels, and Ideals

1.1 Equalizers and coequalizers

Definition 1.1. Let f, g : A → B be morphisms in C. The equalizer is the limit of the
diagram

A B
f

g

It satisfies the following diagram:

eq(f, g) A B

Y

ι
f

g

q

A coequalizer is the colimit of the diagram

A B
f

g

It satisfies the following diagram:

A B coeq(f, g)

Y

f

g
q

π

Lemma 1.1. ι : eq(f, g) → A is a monomorphism, and π : B → coeq(f, g) is an epimor-
phism.
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Proof. Let α, β : C → eq(f, g) be such that ι ◦α = ι ◦ β. Then there is a unique morphism
φ : C → eq(f, g) making the following diagram commute:

eq(f, g) A B

C

ι
f

g

φ
ι◦α

ι◦β

But α and β satisfy the property of φ, so α = φ = β. The property for coequalizers follows
from reversing the arrows.

Theorem 1.1. Every category with products and equalizers is complete.

Proof. Let F : I → C be a functor. Then∏
i∈I F (i)

∏
φ:i 7→φ(i) F (φ(i))

f

g

where f is ∏
k∈I

F (k)
πi−→ F (i)

F (φ)−−−→ F (φ(i))

and g is ∏
k∈I

F (k)
ππ(i)−−−→ F (φ(i))

We claim that eq(f, g)→
∏
i∈I F (i)→ F (i) is the limit. The

eq(f, g) F (i)

F (φ(i))

F (φ)

commute for all φ. So the equalizer has the property of the limit. To show the universal
property, suppose we have the following diagram for some X.

X F (i)

F (φ(i))

ψi

ψφ(i)
F (φ)

This is the same as

X
∏
i∈I F (i)

∏
φ:i 7→φ(i) F (φ(i))

eq(f, g)

f

g
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by the universal property of the equalizer. So eq(f, g) satisfies the universal property of
limF .

Example 1.1. In Set, Gp, Ring, Rmod, and Top, the equalizer of f, g : A → B is
eq(f, g) = {x ∈ A : f(x) = g(x)}. These are all complete categories. The are also
complete, as they have coproducts and coequalizers.

1.2 Kernels and ideals

Definition 1.2. A zero object is an object which is both initial and terminal.

Let C have a zero object 0. There exists a unique morphism 0 : A → B which is the
composition of the unique morphism from A→ 0 and 0→ B.

Definition 1.3. For f : A → B, the kernel ker(f) = eq(f, 0) and coker(f) = coeq(f, 0),
where 0 is the unique zero morphism.

Example 1.2. In Gp, ker(f : G→ G′) = {g ∈ G : f(g) = e}. This is the same in Rmod.

Example 1.3. In Ring, we can makes sense of this is we work in a larger category, Rng,
of pseudorings (rings without identity). If f : R → S, then ker(f) = {x ∈ R : f(x) = 0}.
In fact, ker f is a two-sided ideal.

In all of these cases, ker f = 0 iff f is a monomorphism iff f is 1 to 1. To show that
ker(f) = 0 implies that f is a monomorphism, we have (in Gp)

f(g) = f(h) =⇒ f(gh−1) = e =⇒ gh−1 = e =⇒ g = h,

but this requires internal knowledge of the structure of the category.

Proposition 1.1. 1. If f : G→ G′ is a homomorphism, ker(f) E G.

2. If N E G, then N = ker(π), where f : G→ G/N sends g 7→ gN .

Proof. To prove the first part, note that f(gng−1) = f(g)f(n)f(g)−1 = e, so gng−1 ∈
ker(f). The second follows from the definitions.

Theorem 1.2. Let f : G → G′ be a homomorphism. Then f : G/ ker(f) → im(f) given
by f(g ker(f)) = f(g) is an isomorphism.

Definition 1.4. A left ideal I of a ring R is a subgroup such that ri ∈ I for all r ∈ R
and i ∈ I. A right ideal I of a ring R is a subgroup such that is ∈ I for all s ∈ R and
i ∈ I. A (two-sided) ideal I is a right and left ideal.

If we have a left ideal I, left multiplication R × I → R makes I a left R-module. So a
left ideal of R is exactly a left R-submodule of R.
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Definition 1.5. An (R,S)-bimodule M is a left R-module that is also a right S-module
such that (rm)s = r(ms) for all r ∈ R, s ∈ S, and m ∈M .

A (two-sided) ideal is an (R,R)-subbimodule of R.
If I ⊆ R is a two-sided idea, then R/I = {a+ I : a ∈ R}. We have addition (a+ I) +

(b + I) = (a + b) + I and multiplication (a + I)(b + I) = ab + I. Why is multiplication
well-defined? For a, b ∈ R and i, j ∈ I,

(a+ i)(b+ j) = ab+ aj︸︷︷︸
∈I

+ ib︸︷︷︸
∈I

+ ij︸︷︷︸
∈I

∈ ab+ I.

Definition 1.6. R/I is called a quotient ring.

Observe that ker(f) with f : R → S is an ideal. If a ∈ ker(f), r, s ∈ R, then f(ras) =
f(r)f(a)f(s) = 0. So we have the π : R → R/I with π(r) = r + I and ker(π) = I. So
R/ ker(f) ∼= im(f).

This also works with with left, right, and bimodules. In fact, it works even better! All
left R-modules are kernels, so you don’t need any conditions like normality.

What about cokernels? In Gp, we have a problem: if f : G → G′, im(f) may not be
normal in G′. We take coker(f) = G/im(f), where im(f) denotes the normal closure of
im(f), the smallest normal subgroup containing im(f).

We have been using the term image in the sense of groups. Here is a categorical point
of view.

Definition 1.7. The image im(f) of f : A → B is an object and a monomorphism
ι : im(f)→ B such that there exists π : A→ im(f) with π ◦ ι and such that if e : C → B
is a monomorphism and g : A → C is such that e ◦ g = f , then there exists a unique
morphism ψ : im(f)→ C such that g ◦ ψ = ι.

A B

im(f)

C

f

π

g

ι

ψ

e

Note that e ◦ ψ ◦ π = e ◦ g =⇒ ψ ◦ π = g, since e is a monomorphism.
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