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1 Equalizers, Kernels, and Ideals

1.1 Equalizers and coequalizers

Definition 1.1. Let f,g: A — B be morphisms in C. The equalizer is the limit of the
diagram

It satisfies the following diagram:

A coequalizer is the colimit of the diagram

f
A { B
g

It satisfies the following diagram:
f ™
A== B " cowalf.9)
\ }
Lemma 1.1. ¢ :eq(f,g9) — A is a monomorphism, and w : B — coeq(f,g) is an epimor-
phism.
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Proof. Let a,, B : C'— eq(f,g) be such that toa =10 3. Then there is a unique morphism
¢ : C' — eq(f, g) making the following diagram commute:

/
eq(f7 g) - A _— B
A Lo 9
|
! of3
C
But o and S satisfy the property of ¢, so a = ¢ = 5. The property for coequalizers follows
from reversing the arrows. O

Theorem 1.1. Fvery category with products and equalizers is complete.
Proof. Let F: I — C be a functor. Then
R A .
[Lie, F(9) — [ls:imso0) F(0(0))

where f is

[T 7k = FG) 22 Flo)
kel
and g is

[T Fk) =2 Fo(i))

kel
We claim that eq(f,g) = [L;c; F (i) — F(i) is the limit. The

eq(f, g F(i

,g) ——
))
commute for all ¢. So the equalizer has the property of the limit. To show the universal
property, suppose we have the following diagram for some X.

X—>F

N

This is the same as

)‘( —— [ies F(0) # H¢:i'—>¢(i) F((1)

/

eq(}, g)



by the universal property of the equalizer. So eq(f,g) satisfies the universal property of
lim F. O

Example 1.1. In Set, Gp, Ring, Rmod, and Top, the equalizer of f,g : A — B is
eq(f,9) = {xr € A : f(z) = g(x)}. These are all complete categories. The are also
complete, as they have coproducts and coequalizers.

1.2 Kernels and ideals

Definition 1.2. A zero object is an object which is both initial and terminal.

Let C have a zero object 0. There exists a unique morphism 0 : A — B which is the
composition of the unique morphism from A — 0 and 0 — B.

Definition 1.3. For f : A — B, the kernel ker(f) = eq(f,0) and coker(f) = coeq(f,0),
where 0 is the unique zero morphism.

Example 1.2. In Gp, ker(f : G — G') = {g € G : f(g) = e}. This is the same in Rmod.

Example 1.3. In Ring, we can makes sense of this is we work in a larger category, Rng,
of pseudorings (rings without identity). If f : R — S, then ker(f) = {z € R: f(z) = 0}.
In fact, ker f is a two-sided ideal.

In all of these cases, ker f = 0 iff f is a monomorphism iff f is 1 to 1. To show that
ker(f) = 0 implies that f is a monomorphism, we have (in Gp)

flo)=f(h) = flgh™')=e = gh™'=e = g=h,
but this requires internal knowledge of the structure of the category.
Proposition 1.1. 1. If f: G — G’ is a homomorphism, ker(f) < G.
2. If N <4 G, then N = ker(w), where f: G — G/N sends g — gN.

Proof. To prove the first part, note that f(gng=') = f(g)f(n)f(g)~' = e, so gng™! €
ker(f). The second follows from the definitions. O

Theorem 1.2. Let f : G — G’ be a homomorphism. Then f : G/ker(f) — im(f) given
by f(gker(f)) = f(g) is an isomorphism.

Definition 1.4. A left ideal I of a ring R is a subgroup such that ri € I for all r € R
and ¢ € I. A right ideal I of a ring R is a subgroup such that is € I for all s € R and
i€I. A (two-sided) ideal [ is a right and left ideal.

If we have a left ideal I, left multiplication R x I — R makes I a left R-module. So a
left ideal of R is exactly a left R-submodule of R.



Definition 1.5. An (R, S)-bimodule M is a left R-module that is also a right S-module
such that (rm)s = r(ms) for all r € R, s € S, and m € M.

A (two-sided) ideal is an (R, R)-subbimodule of R.

If I C R is a two-sided idea, then R/I = {a+ I : a € R}. We have addition (a + I) +
(b+1I) = (a+b) + I and multiplication (a + I)(b+ I) = ab+ I. Why is multiplication
well-defined? For a,b € R and i,j € I,

a+i)b+j)=ab+ aj + ib + ij €ab+ 1.
(a+14)(b+7) J + i

el el el
Definition 1.6. R/I is called a quotient ring.

Observe that ker(f) with f: R — S is an ideal. If a € ker(f), r,s € R, then f(ras) =
f(r)f(a)f(s) = 0. So we have the 7 : R — R/I with n(r) = r 4+ I and ker(7) = I. So
R/ ker(f) = im(f).

This also works with with left, right, and bimodules. In fact, it works even better! All
left R-modules are kernels, so you don’t need any conditions like normality.

What about cokernels? In Gp, we have a problem: if f : G — G’, im(f) may not be
normal in G’. We take coker(f) = G/im(f), where im(f) denotes the normal closure of
im(f), the smallest normal subgroup containing im(f).

We have been using the term image in the sense of groups. Here is a categorical point
of view.

Definition 1.7. The image im(f) of f : A — B is an object and a monomorphism
¢ :im(f) — B such that there exists 7 : A — im(f) with 7 o+ and such that if e : C' — B
is a monomorphism and g : A — C' is such that e o g = f, then there exists a unique
morphism v : im(f) — C such that g o) = .

A ! B
\‘ /
A im(f)
C

Note that eocpomr =eog = 1 om = g, since e is a monomorphism.
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