Math 210A Lecture 9 Notes

Daniel Raban

October 17, 2018

1 Equalizers, Kernels, and Ideals

1.1 Equalizers and coequalizers

Definition 1.1. Let $f, g : A \to B$ be morphisms in \mathcal{C} . The **equalizer** is the limit of the diagram

$$A \xrightarrow[g]{f} B$$

It satisfies the following diagram:

$$\begin{array}{c} \operatorname{eq}(f,g) \xrightarrow{\iota} A \xrightarrow{f} B \\ \uparrow \\ Y \end{array}$$

A coequalizer is the colimit of the diagram

$$A \xrightarrow{f} B$$

It satisfies the following diagram:

Lemma 1.1. $\iota : eq(f,g) \to A$ is a monomorphism, and $\pi : B \to coeq(f,g)$ is an epimorphism.

Proof. Let $\alpha, \beta : C \to eq(f,g)$ be such that $\iota \circ \alpha = \iota \circ \beta$. Then there is a unique morphism $\phi : C \to eq(f,g)$ making the following diagram commute:

But α and β satisfy the property of ϕ , so $\alpha = \phi = \beta$. The property for coequalizers follows from reversing the arrows.

Theorem 1.1. Every category with products and equalizers is complete.

Proof. Let $F: I \to \mathcal{C}$ be a functor. Then

$$\prod_{i \in I} F(i) \xrightarrow{f} \prod_{\phi: i \mapsto \phi(i)} F(\phi(i))$$

where f is

$$\prod_{k \in I} F(k) \xrightarrow{\pi_i} F(i) \xrightarrow{F(\phi)} F(\phi(i))$$

and g is

$$\prod_{k \in I} F(k) \xrightarrow{\pi_{\pi(i)}} F(\phi(i))$$

We claim that $eq(f,g) \to \prod_{i \in I} F(i) \to F(i)$ is the limit. The

commute for all ϕ . So the equalizer has the property of the limit. To show the universal property, suppose we have the following diagram for some X.

This is the same as

$$\begin{array}{c} X & \longrightarrow \prod_{i \in I} F(i) \xrightarrow{f} \prod_{\phi: i \mapsto \phi(i)} F(\phi(i)) \\ \downarrow & & \\ eq(f,g) \end{array}$$

by the universal property of the equalizer. So eq(f,g) satisfies the universal property of $\lim F$.

Example 1.1. In Set, Gp, Ring, Rmod, and Top, the equalizer of $f, g : A \to B$ is $eq(f,g) = \{x \in A : f(x) = g(x)\}$. These are all complete categories. The are also complete, as they have coproducts and coequalizers.

1.2 Kernels and ideals

Definition 1.2. A zero object is an object which is both initial and terminal.

Let \mathcal{C} have a zero object 0. There exists a unique morphism $0 : A \to B$ which is the composition of the unique morphism from $A \to 0$ and $0 \to B$.

Definition 1.3. For $f : A \to B$, the kernel ker(f) = eq(f, 0) and coker(f) = coeq(f, 0), where 0 is the unique zero morphism.

Example 1.2. In Gp, $\ker(f: G \to G') = \{g \in G : f(g) = e\}$. This is the same in Rmod.

Example 1.3. In Ring, we can makes sense of this is we work in a larger category, Rng, of pseudorings (rings without identity). If $f : R \to S$, then $\ker(f) = \{x \in R : f(x) = 0\}$. In fact, ker f is a two-sided ideal.

In all of these cases, ker f = 0 iff f is a monomorphism iff f is 1 to 1. To show that ker(f) = 0 implies that f is a monomorphism, we have (in Gp)

$$f(g) = f(h) \implies f(gh^{-1}) = e \implies gh^{-1} = e \implies g = h,$$

but this requires internal knowledge of the structure of the category.

Proposition 1.1. 1. If $f: G \to G'$ is a homomorphism, $\ker(f) \trianglelefteq G$.

2. If $N \leq G$, then $N = \ker(\pi)$, where $f: G \to G/N$ sends $g \mapsto gN$.

Proof. To prove the first part, note that $f(gng^{-1}) = f(g)f(n)f(g)^{-1} = e$, so $gng^{-1} \in ker(f)$. The second follows from the definitions.

Theorem 1.2. Let $f: G \to G'$ be a homomorphism. Then $\overline{f}: G/\ker(f) \to \operatorname{im}(f)$ given by $\overline{f}(g \ker(f)) = f(g)$ is an isomorphism.

Definition 1.4. A left ideal I of a ring R is a subgroup such that $ri \in I$ for all $r \in R$ and $i \in I$. A **right ideal** I of a ring R is a subgroup such that $is \in I$ for all $s \in R$ and $i \in I$. A **(two-sided) ideal** I is a right and left ideal.

If we have a left ideal I, left multiplication $R \times I \to R$ makes I a left R-module. So a left ideal of R is exactly a left R-submodule of R.

Definition 1.5. An (R, S)-bimodule M is a left R-module that is also a right S-module such that (rm)s = r(ms) for all $r \in R$, $s \in S$, and $m \in M$.

A (two-sided) ideal is an (R, R)-subbimodule of R.

If $I \subseteq R$ is a two-sided idea, then $R/I = \{a + I : a \in R\}$. We have addition (a + I) + (b + I) = (a + b) + I and multiplication (a + I)(b + I) = ab + I. Why is multiplication well-defined? For $a, b \in R$ and $i, j \in I$,

$$(a+i)(b+j) = ab + \underbrace{aj}_{\in I} + \underbrace{ib}_{\in I} + \underbrace{ij}_{\in I} \in ab + I.$$

Definition 1.6. R/I is called a quotient ring.

Observe that ker(f) with $f: R \to S$ is an ideal. If $a \in \text{ker}(f)$, $r, s \in R$, then f(ras) = f(r)f(a)f(s) = 0. So we have the $\pi: R \to R/I$ with $\pi(r) = r + I$ and ker(π) = I. So $R/\text{ker}(f) \cong \text{im}(f)$.

This also works with with left, right, and bimodules. In fact, it works even better! All left *R*-modules are kernels, so you don't need any conditions like normality.

What about cokernels? In Gp, we have a problem: if $f : G \to G'$, $\operatorname{im}(f)$ may not be normal in G'. We take $\operatorname{coker}(f) = G/\operatorname{im}(f)$, where $\operatorname{im}(f)$ denotes the **normal closure** of $\operatorname{im}(f)$, the smallest normal subgroup containing $\operatorname{im}(f)$.

We have been using the term image in the sense of groups. Here is a categorical point of view.

Definition 1.7. The **image** $\operatorname{im}(f)$ of $f : A \to B$ is an object and a monomorphism $\iota : \operatorname{im}(f) \to B$ such that there exists $\pi : A \to \operatorname{im}(f)$ with $\pi \circ \iota$ and such that if $e : C \to B$ is a monomorphism and $g : A \to C$ is such that $e \circ g = f$, then there exists a unique morphism $\psi : \operatorname{im}(f) \to C$ such that $g \circ \psi = \iota$.

Note that $e \circ \psi \circ \pi = e \circ g \implies \psi \circ \pi = g$, since e is a monomorphism.